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LETTER TO THE EDITOR 

Nonlinear stability analysis in multilayer quasigeostrophic 
systems 

Stefano Pierinit and Angelo Vulpiani 
Istituto di Fisica G Marconi, University of Rome, Italy 

Received 2 March 1981 

Abstract. A sufficient condition for nonlinear stability of steady solutions of the quasigeo- 
strophic equations in a multilayer system is found. It proves the stability of given shear flows 
in a two-layer model that were known to be neutrally stable only. 

In this letter we study the problem of nonlinear stability of steady-state solutions in a 
multilayer quasigeostrophic fluid dynamical system. By a generalisation of a theorem 
(Arnol'd 1965) about nonlinear stability of stationary plane curvilinear flows, we obtain 
a sufficient condition for a steady solution to be stable in the Lyapunov sense, i.e. 
without linearising the evolution equations in the perturbation. The application of our 
result to a two-layer shear flow gives a rigorous stability condition which was previously 
obtained through linear computations. 

The large scale motions of oceans and atmospheres are described (Pedlosky 1979) 
by the shallow-water equations in the quasigeostrophic approximation (small Rossby 
number). If the stratification in density is modelled by N superimposed layers whose 
constant densities are p i  < p2 < * < p~ (the first layer is the upper one) the evolution is 
given by the following system of partial differential equations (Pedlosky 1979) 

i = l , . .  . , N  

J ( a ,  b )  = a,b, - a,b, +boundary and initial conditions (1) 
where t,bi is the stream function of the ith layer (i.e. the horizontal velocity field in the Ith 
layer is vi(x, y, t )  = (-at,bi/ay, at,bi/dx)) and 
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where g is the acceleration of gravity, po the mean density, Di the mean thickness of the 
ith layer, R the Earth's radius, R the Earth's angular velocity, rpo the reference latitude 
and d ( y )  the bottom topography. 

The steady solutions of equations (1) are given by 

J ( J i 9  4i) = 0 i = 1 , .  . , , N +boundary conditions. (2) 

4i = Pi(Jii) (3) 

A solution of equations (2) is given by the equations 

i = 1, .  * * , N 

where Pi is any smooth function such that the boundary conditions can be satisfied. In a 
closed domain %' the natural boundary conditions are 

~ , + ~ / ~ w  = ci = constant. 

However, in geophysical situations the open boundary conditions are imposed: 

Usually the study of stability of a steady solution of the differential problem 

!!= Af +boundary and initial conditions ( 5 )  at  

(where A is a nonlinear operator) is carried out in the framework of the linearised 
stability theory (Joseph 1976). From a given steady solution f (A?= 0) one can define 
the linear operator AT by 

A ( f + Sf) = AT Sf + O(8f'); (6) 
then the usual linearised stability theory consists in analysing the eigenvalues of the 
linear operator AT. If all the eigenvalues of have a negative real part, the steady 
solution fof equation (5) is asymptotically stable. If one (or more than one) of them has 
a positive real part, f is unstable. If some eigenvalue is a pure imaginary number and 
the other eigenvalues are real negatives (neutral stability), no definitive conclusion can 
be obtained. This last case is, unfortunately, typical in inviscid fluid dynamical 
problems (see Joseph (1976) for a discussion of this point). Therefore, in this case, 
nonlinear techniques should be used to discuss stability. 

In this context very few results are known and many of them are obtained by 
applying Lyapunov's well known second theorem. Let F be a metric space in which a 
time evolution T' is given. f~ ,5T is a rest point if T ' f =  f, Vt. The above mentioned 
Lyapunov theorem states (Hahn 1963) the following. 

Theorem. If a functional H [ f ]  exists such that ( a )  N has a relative minimum in f and 
(b  1 

-HITt f]sO d iffEIT 
dt 

where I7 is a neighbourhood of E then f i s  a stable rest point in the a Lyapunov sense. In 
this case H is called a Lyapunov functional. In our case a point f corresponds to a 
vector qb = 

Let us emphasise that the explicit determination of a Lyapunov functional for a 
given system is very difficult and it is possible only in some cases in which there are 

. . . , I , + N )  and the time evolution T' is determined by equation (1). 
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particular symmetries or conservation laws. In our case, as an infinite number of 
conservation laws exists, it is possible to determine a Lyapunov functional for some 
steady solution of the problem. 

Let us now present our main result: one can affirm that the steady solution 
4 = (J1, . . . , J N )  satisfying equations (3) and (4) with given functions Pi is stable in the 
Lyapunov sense if the following conditions hold: 

(7)  PI ( J i )  > 0 i =  1 , .  . . , N. 

This sufficient condition for stability can be obtained as follows: defining 

@.(z)  = P;’(z)  i.e. @.(Pi(z))  = z 

we want to prove that H is a Lyapunov functional for the steady solution 4 under 
conditions ( 7 ) ;  then, for the second Lyapunov theorem, 4 is a stable steady solution. 
We thus have to prove that conditions ( a )  and ( b )  hold. 

( a )  The functional H has a minimum in 4 because 

SH[$] = 0 S 2 H [ J ]  > 0 

where S H  and S Z H  denote first and second variation of H. Indeed one has 

N 1  N - 1  

-(V+iVS+i + @’j(qi)Sqi) + 
r=l Fi i = l  

SH[@I = J ( (+i - +i+l)(S+i  - S+i+l)) dx dy 

The first variation is zero for @ = 4 since & = @i(qi); moreover S 2 H  is positive for 
@ = 4 because of condition (7) ,  which can also be written as 

@ I l ( G j )  > 0. 

( b )  The second condition of the theorem is verified because H[+] is conserved in 
time, i.e. 

d 
-H[@] = 0. 
dt  

The functionals 5 ai(qi) dx dy are time invariant for any @ ( e )  because of the conser- 
vation of the quantity qi related to a fluid particle in the ith layer, expressed by (1) .  
Besides, the total energy 
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is also conserved. This can be seen by multiplying the ith equation in (1) by Jlj/Fi and 
integrating: 

The invariance of H is thus proved, so 4 is stable if conditiqns (7) are verified. 

steady solution 
As an application let us consider a shear flow described in a two-layer system by the 

I j i  = uiy i = 1 , 2  vi > 0. (8) 

This solution does not satisfy the boundary condition (4). However, the unmodified 
conditions for stability (7) hold also in this case providing the domain is a cylinder with 
its axis parallel to the earth’s rotation axis; the damping of the velocity at y -$ i a  must 
also be prescribed. 

‘Then if the velocities satisfy 

--<Uz-U1<- P B = p + b ’  
Fi Fz 

stability is ensured rigorously, i.e. without having linearised the equations of motion. 
If U1, U2<0,  i.e. if the velocities are directed eastward, conditions (9) can be 

applied in a moving reference frame. Let us make a Galilean transformation 

x = x ’ + c t  Y = Y ’  t = t’ 

with c >max (lull, IU21) and c << R / T  where T is the Earth’s period of rotation; 
equations (1) become 

where 
N 

ljj = 4; +cy’ ii = A& + F, 1 Ti& + p’y ’ + Sj2b 
j = l  

with p’ = P because c << R/ T. 
In this new frame our steady solution is 

$1 = ( c  - Ui)Y’ = Uly’ vi > o  
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and so our stability condition can be applied. One obtains 

-@IF1 ut - U2 PIF2. 

Conditions (10) and (1 1) have an immediate physical meaning. 
In order to study the stability properties of the steady solution (8), Pedlosky (1964), 

Gill et a1 (1974) and Tang (1979) linearised the evolution equations in the perturbation 
SI) and obtained that,under the same condition ( l l ) ,  S I ) ( x ,  y, t )  remains bounded but 
does not decrease in time; thus stability was not inferred rigorously, as discussed at the 
beginning of this letter. Here, on the contrary, condition (11) (and (10) for Vi > 0) is a 
sufficient condition for rigorous stability (in the Lyapunov sense) of I,&. 

Thanks are due to Dr P Henrotay for useful discussions and to Drs L Peliti and E Salusti 
for their criticism of the manuscript. 
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